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Abstract—Modern mobile application binaries are bulky for
many reasons: software and its dependencies, fast-paced addition
of new features, high-level language constructs, and statically
linked platform libraries. Reduced application size is critical not
only for the end-user experience but also for vendor’s download
size limitations. Moreover, download size restrictions may impact
revenues for critical businesses.

In this paper, we highlight some of the key reasons of code-
size bloat in iOS mobile applications, specifically apps written
using a mix of Swift and Objective-C. Our observation reveals
that machine code sequences systematically repeat throughout the
app’s binary. We highlight source-code patterns and high-level
language constructs that lead to an increase in the code size. We
propose whole-program, fine-grained machine-code outlining as
an effective optimization to constrain the code-size growth. We
evaluate the effectiveness of our new optimization pipeline on
the UberRider iOS app used by millions of customers daily.
Our optimizations reduce the code size by 23%. The impact of
our optimizations on the code size grows in magnitude over time
as the code evolves. For a set of performance spans defined by
the app developers, the optimizations do not statistically regress
production performance. We applied the same optimizations to
Uber’s UberDriver and UberEats apps and gained 17% and
19% size savings, respectively.

Index Terms—code-size, machine outlining, iOS, swift, inter-
module optimization, whole-program optimization

I. INTRODUCTION

UberRider is Uber’s flagship mobile app used by several
million active users worldwide to assist in their transportation
needs. Uber’s business model depends primarily on the mobile
app, as is the case with many other modern businesses [1]. The
fast-growing business demands rapid feature enhancements to
the UberRider app, which has put a tremendous burden on
the application’s binary size. Furthermore, Apple App Store [2]
imposes a limit on the app size when downloading over the data
plan. Any app larger than the limit can only be downloaded
over the Wi-Fi. The download limits depend on the OS version,
and they have been 100MB, 150MB, and 200MB in 2017, 2019,
and 2020 respectively. This critical restriction means first-time
users cannot download the app when they need it the most,
and the company cannot deliver features or security updates
to existing users when they are not on Wi-Fi. We established
a correlation between the UberRider app size and customer
engagement — when the app size crosses the download size
limit, and it leads to a 10% reduction in app installations, 12%
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Fig. 1: The UberRider app’s code-size grows rapidly (the blue curve with
dots). The machine-code outlining optimization delivers 23% size reduction
(the red curve with dots). The thick straight lines show the regression lines
and the corresponding equations appear on top of the chart along with their
R2 values. The optimizations change the slope of the line and reduce the
code-size growth rate by ∼ 2×.

reduction in sign-ups, and 20% reduction in first-time bookings
resulting in revenue loss.

During the past three years, the UberRider app has often
reached closer to the App store download limit. Over 92%
of the total app size is the application binary; the remaining
size is due to media and resources. Over 77% of the binary
is the machine instructions; the remaining size is due to data
embedded in the binary. The blue line in Figure 1 shows the
code size growth had we not applied any of the optimizations
discussed in this paper. The red line shows the effects of our
size-reduction optimizations: notably, first, we reduce the code
size by 23%, and second but more importantly, we reduce the
rate of code size growth by ∼ 2×.

Since the UberRider app was growing in code size, we
set out to reduce it with the following objectives.

1) Bring the size to be well under the App Store download
limit. Smaller the better.

2) Choose the optimization that continuously delivers impact
for the foreseeable future as the app evolves.

3) Be transparent so that application developers are not
asked to divert their energies towards size reduction.

4) Do not regress the performance of critical use cases.
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5) Do not increase local build times since the build time is
a critical developer productivity factor.

Code size is at the heart of many compiler optimizations [3],
[4] such as common sub-expression elimination [5], partial
redundancy elimination [6], copy propagation [7], inlining [8],
value numbering [9], constant propagation [10], dead and
unreachable code elimination [4], compiler-pass reordering [11]–
[14], code compression [15]–[17], register allocation and
instruction scheduling [18], and peephole optimizations [19].
UberRider is already compiled for size using the iOS build
pipeline (which uses LLVM [20]), but they were insufficient
to reduce our app size growth. Link-time and post-link-time
optimizations [21]–[28] have shown reasonable success in code-
size reductions, which we employ in our work.

We systematically assessed the UberRider app software at
various granularities — module, file, function, basic block, and
sequences of machine instruction. Our insights demonstrated
several common patterns of machine code repetition. We
identified outlining a sequence of machine instructions (aka
machine outlining) as an effective optimization to reduce code
size. Outlining [29], [30] is the opposite of inlining [8] and can
hurt performance if done in hot loops. Loops hotspots, however,
are uncommon in UI-intensive apps such as UberRider,
UberDriver, and UberEats.

Machine-code outlining is available in LLVM, but a naive
application of machine outlining was not beneficial; hence,
we developed a compilation pipeline that could make machine
outlining deliver benefits at the whole-program level. We further
identified the limitations of machine outlining on how it misses
opportunities and developed repeated machine outlining to
extract more code size reduction. The result is a significant code-
size reduction in UberRider (23%), UberDriver (17%),
and UberEats (19%) apps with no statistically significant
performance regression and zero involvement from our feature
team developers. In the process, we encountered several
hurdles and limitations arising from our multilingual app and
performance regressions, which we describe in §VI.

Our optimizations are (a) in production and used by millions
of Uber customers, (b) upstreamed to the open-source LLVM,
and (c) not only holding up their promises build after build,
but their impact on code size is growing over time. We make
the following contributions in this paper.

1) Highlight common patterns of machine code repetitions
and pinpoint their causes.

2) Employ whole-program machine-code outlining as an
effective means to reduce code size.

3) Invent repeated machine outlining to gain additional
size reduction, which accounts for 27% of the total size
saving.

4) Mitigate performance regressions arising from our opti-
mizations via a data layout optimization.

5) Evaluate, in detail, the impact of our techniques on the
UberRider iOS mobile application in use worldwide
by several million daily users.

.swift.swift
.swift

.swift

.swift.swift
.swift

.swift.swift
.objc

swiftc

swiftc

clang++

LLVM 
-LINK

LLVMIR
B 
I 
N 
A 
R 
Y

LLVMIR

LLVMIR

O 
P 
T

L 
L 
C 

(m/c 
outli
ning)

L 
I 
N 
K 
E 
R

.swift.swift
.res

A 
P 
P

.swift.swift
.swift

.swift

.swift.swift
.swift

.swift.swift
.objc

swiftc

swiftc

clang++

.o

.o

.o

L 
I 
N 
K 
E 
R

B 
I 
N 
A 
R 
Y

.swift.swift
.res

A 
P 
P

other.opre-built.o

other.opre-built.o

Fig. 2: The default iOS build pipeline.

6) Demonstrate 23% size reduction in the UberRider app
and 2× reduction in code-size growth over time as a
result of our optimizations.

In the rest of this paper, we use the UberRider app for a
deep dive; the findings discussed herein are corroborated by the
UberDriver and UberEats apps, and the optimizations
are deployed in production, delivering similar benefits.

II. BACKGROUND AND IOS APP BUILD CHAIN

The UberRider app is written in a mix of Swift and
Objective-C programming languages. Swift is a statically
compiled programming language, which is gaining in popularity
among iOS developers. Swift offers reliability and productivity
features including strong static typing, extensive error handling
constructs, and automatic memory management via reference
counting that makes it an attractive alternative to Objective-C.
Swift is placed at 12th rank, and Objective-C is at 19th rank
according to TIOBE [31] programming language ranking.

A. Default iOS Build Pipeline

Figure 2 depicts the default build pipeline used by iOS
applications, including the UberRider app’s build pipeline
prior to the work described in this paper. The workflow
involves compiling all the source files in a module to produce
an AArch64 [32] object file. Several such modules are
independently compiled; since UberRider is multilingual,
it also compiles Objective-C files separately into object files.
All object files, including any pre-built binaries, are linked
with the system linker into the final binary. The app itself may
package additional resources.

The overall flow of the Swift compiler is shown in Figure 3.
A Swift file is parsed to an AST on which various semantic
checks are performed. Subsequently, SILGen generates Swift
Intermediate Language (SIL) and performs various optimiza-
tions. IRGen lowers SIL to LLVM IR, which is optimized and
compiled to an object file.

B. The UberRider App

The UberRider app has about two million lines of code,
with ∼ 83% in Swift and the rest in Objective-C. The source
code for UberRider consists of 476 modules, out of which
62 are vendor-specific libraries, including RxSwift [33], Snap-
Kit [34], Swift-NIO [35], Freddy [36], and Swift-Protobuf [37].
Individual modules are compiled using the whole-module
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Fig. 3: Swift compiler passes.

optimization (-wmo) in the Swift compiler, which performs
inter-procedural optimizations within a module. We use the
-Osize flag to produce a size-optimized binary.

The UberRider app developers have employed several
linting rules to guard against binary size explosion, which
include avoiding large value types (e.g., struct and enum),
restricting access control levels to the lowest (e.g., avoid
public and open accesses when possible), avoiding exces-
sive use of generics, and using final attributes. The app build
infrastructure employs several in-house static analysis tools for
removing dead-code [38] and resources and disabling reflection
metadata to reduce binary size. Although these techniques
together reduce the app’s size, opportunities for cross-module
optimizations are still left unexplored, which is one of the
focuses of this paper.

C. LLVM MachineOutliner

The LLVM compiler recently introduced a
MachineOutliner pass [39], which targets the code
size problem. Our work builds upon this optimization.
MachineOutliner is a target-specific pass that runs late

in the optimization pipeline after register allocation. It maintains
machine instructions belonging to every basic block of a
function in a suffix tree. For each unique sequence (representing
a repetition), it creates a new outlined function (if proven safe
and profitable), and then substitutes each occurrence with a
call/branch to the outlined function. The order of choosing the
outlining candidates is a greedy heuristic.

Outlining a sequence of machine instructions out of a
function is not free: first, code patches, if necessary at the
extracted location or in the new function, may eliminate the
size benefit; and second, the new function call can introduce a
performance penalty. LLVM heuristic ignores the performance
cost, but it is cognizant of the size benefit. Each supported
architecture (x86 and AArch64) supplies information on
how a sequence of instructions should be outlined including
estimates on the bytes needed to create an outlined function.
This cost model drives the outlining choice.

The optimal solution to outlining can be cast into the
knapsack optimization problem, which is NP-hard [29], [30].
MachineOutliner employs a greedy heuristic that picks
the pattern from a pool of patterns that saves the most size
immediately. We define a substring as a contiguous sequence
of instructions within another instruction sequence. Assume
an instruction sequence α is chosen as the first sequence to
outline. If a lengthier sequence, β, has a substring α, then
the α part of β will be outlined, but the MachineOutliner
discards the rest of β from further consideration.

TABLE I: SUMMARY OF DIFFERENT OPTIMIZATION CHOICES.

Level Optimization considered Note
AST Source function replicas [40] <1% replication
SIL SIL outlining [41] 0.41% size saving

LLVM-IR

MergeFunction [42] 0.9% size saving
FMSA [43] 2% size savings

MergeSimilarFuncs [44] high build times
IROutliner [45] not target aware

ISA Repeated machine outlining 23% size reduction

III. THE LANDSCAPE OF BINARY-SIZE SAVINGS

Code duplication can be detected at different levels: Swift
AST, Swift Intermediate Language (SIL), LLVM IR, and
machine code. Table I depicts the entire landscape and
opportunities for savings that we investigated before arriving
at our final cross-module machine-code level outlining choice.

AST: Static clone detection tools such as SourcerCC [46] and
PMD [40] tokenize the source files and, by using a similarity
measure, can identify clones at a finer granularity. Although
we have deployed PMD in our production pipeline, the clone
reports produced periodically contain high degrees of false-
positives (this is not surprising for a static analysis tool),
often leading to deprioritization compared to, say new feature
development, in a fast-paced environment.

SIL: The SILOptimizer component in Figure 3 enables
an “Outlining” [41] pass that creates function calls in lieu of
inlined instruction sequences for certain well-defined patterns
such as copy, assignment, and reference counting on value types.
However, the impact of this optimization on the UberRider
app is negligible — only 0.41% size saving.

LLVM IR: The MergeFunction [42] pass in LLVM
merges functions with identical IR. The impact of this optimiza-
tion on the UberRider app is negligible — less than 0.9%
size saving. We also explored upcoming code-size optimizations
in the LLVM community: Function merging by sequence
alignment (FMSA) [43], [47] delivered a 2% size reduction
with one-hour compilation time; MergeSimilarFuncs [44],
[48] could not complete compilation in our stipulated 24-hour
build time, which could be because it is very recent and not
tested on large Swift+Objective-C codebases; finally, we had
trouble getting the IROutliner [45] to work for all modules
of UberRider.

ISA: Since a high-level IR instruction often lowers to more
than one machine instruction, prior approaches cannot identify
clones at the sub-IR-opcode level. Thus the best granularity
of clone detection is at the machine level. When done at link
or post-link time, this approach offers an ultimate window
into observing the entire binary; it reveals clones introduced
by prior layers irrespective of its provenance — source code,
language compiler, IR, and machine-code generation. This is
the approach taken by us.
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… 
$x0 = ORRXrs $xzr, $x20 
call swift_release 

… 

… 
call outlined_function  

… 

outlined_function: 
$x0 = ORRXrs $xzr, $x20 
branch swift_release

swift_release: 
… 
return

swift_release: 
… 
returnOriginal function call sequence

Transformed instructions

Fig. 4: An example of profitably outlining a short two instruction sequence
ending with a call instruction. The outlined function exploits the tail call
optimization.

IV. MACHINE-CODE REPLICATION PATTERNS: A BINARY
ANALYSIS

In this section, we summarize our findings by systemati-
cally analyzing the repeating machine-code sequences in the
UberRider app. We use the term pattern to mean a unique
instruction sequence; no two patterns are the same. We use the
term candidate to mean an instance of a pattern; two or more
candidates can match the same pattern.

Single instruction replicas are abundant, but they cannot be
replaced profitably on a fixed-instruction width architecture
such as AArch64; the cost of replacing the cloned instruction
is higher than retaining the original instruction. Thus, we
don’t investigate single-instruction replicas. On the other hand,
instruction patterns of length two or more can be profitable
for outlining. That is, we can substitute them with a shorter
sequence, typically a single call or an unconditional branch
instruction. This requires transferring the control to an outlined
instruction sequence that effectively executes the original
sequence of instructions and then resumes at the instruction
immediately following the original sequence. We limit our study
to basic-block boundaries for two reasons: (1) the opportunity
to replace lengthier patterns is small, which becomes evident
later in this section, and (2) it is difficult to reason about
profitability in the presence of control-flow.

Figure 4 shows an example of a profitable 2-instruction
sequence ending with a call instruction found in the
UberRider app. These two instructions can be replaced with
a call instruction to a newly created outlined function; the
outlined function executes the prefix instruction(s) and finally
tail-calls the original function call. Similarly, a 2-instruction
sequence ending with a return instruction can be outlined by
simply introducing a jump to the outlined function; the outlined
function will consist of the original 2-instruction sequence.
Such patterns ending with a call or a return instruction
are the most common ones; they account for 67% of all the
profitable and repeating candidates in the UberRider app.

Since the default iOS build pipeline (described in §II-A) does
not facilitate optimizations on the whole-program level, we
built an alternate pipeline (shown in Figure 10, details in §V-A),
which provides the ability to outline machine code sequences

at the whole program-level. In this new pipeline, we introduce
a statistics collection pass after machine-code generation to
log the patterns of machine instructions. Our pass runs late in
the llc phase of the LLVM compiler after all the machine-
code optimizations, including register allocation, have been
performed. The pass logs the patterns with their frequency of
repetitions (high-to-low) including the corresponding function
names and source files for further investigation.

We report only those patterns that yield at least one-byte
size saving if outlined in the entire binary. The profitability
includes the overhead of instructions introduced (if any) for
saving and restoring registers at the call site and frame creation
and destruction cost (if any) at the newly created function. By
inspecting the patterns of repeated machine-code sequences
meeting this profitability criterion across the entire application
binary, we make the following key observations.

(1) Machine-code sequences repeat frequently, and the
frequency of repetition follows the power-law curve. Figure 5
plots the frequency of repetition in machine-code sequences
(blue line) overlaid with the sequence length (red line). The
x-axis denotes the unique-id of each pattern where the highest
occurring pattern is given an id 1, the next highest is given an
id 2, and so on. It is a log-log graph. A few patterns repeat
very frequently, but there is also a very long tail of patterns
each progressively repeating fewer times, which obeys the
power-law (y = axb) with 99.4% confidence. Listings 1-8
show a few most recurring patterns.

Figure 6 shows the same red line of Figure 5, however, the
x-axis is not on the log scale. The red line reveals a recurring
fractal pattern [49] — frequently occurring patterns have a very
short sequence length (left side); as the frequency decreases,
the diversity of sequence lengths increases (right side). The data
points from one spike to the next spike on the x-axis represent
a cluster of patterns that repeat the same number of times;
within each cluster, there are very few lengthy sequences, but
as the sequence length reduces, a larger and larger variety of
patterns emerge. Finally, comparing one cluster on the left
(higher repetition frequency) with another cluster on the right
(lower repetition frequency), it is obvious that, as the repetition
frequency decreases, both the variety of patterns (the length of
horizontal steps) and sequence lengths (the height of spikes)
increase.

Figure 7 plots the cumulative size savings possible by
outlining the next most profitable pattern (x-axis). A lot of
patterns (> 105) need to be outlined to extract most (> 90%) of
the possible size gain. One cannot “hard-code” a few patterns
and hope to gain a significant benefit.

(2) Patterns of length only two occur most commonly, and
lengthier patterns are quite infrequent This finding is evident
because as the length of the pattern increases, finding a
match naturally reduces. Figure 8 depicts a histogram with
bins representing different sequence-lengths, and the y-axis
is the number of candidates of a sequence-length found in
the entire program. There are far more repetitions of shorter
patterns than the lengthier ones. The longest repeating pattern
is 279 instructions long and repeats three times (clipped in the

366



Pattern ids ordered (high to low) by the number of repeats
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Fig. 5: Each point on the x-axis (log scale) is an instruction sequence pattern
ordered (high to low) by its frequency of repeats. The number of candidates
per pattern (blue line) follows a power-law curve with a long tail. The red
line plots the sequence length for each pattern.

Clusters with same repeat frequency

Fig. 6: The fractal nature of the sequence length of repeating instructions;
at very high repeat counts, the sequences are of short length; low repeat
counts offer a wide variety of sequence lengths and there are more unique
sequences of shorter lengths.
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Fig. 7: The x-axis is sorted by the patterns with highest to lowest repeat
frequency, y-axis is the cumulative savings possible. Numerous (> 105)
patterns should be outlined to gain most of the savings.
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sequence length, the fewer the number of repeats.

histogram). This emphasizes that the machine outlining does
not need to go beyond a basic block; the average basic block
length is 11.5 instructions in the UberRider app, which
covers more than 99% of the candidates.

(3) Language and runtime features related to reference
counting and memory allocation are the cause of the most
frequently repeated patterns The top few frequently appearing
patterns in Listings 1-6 are all related to language and the
runtime specifics — reference counting and memory allocation
of Swift and Objective-C. Repetitions of this nature cannot be

identified at high-level IR abstractions since they are captured
within a single IR instruction.

Since both Swift and Objective-C are reference
counted [50], instructions to increment (swift_retain
and objc_retain) and decrement (swift_release and
objc_release) reference are highly frequent. Consider
Listing 1 as an example; the first instruction moves
the value present in register $x20 to register $x0 by
performing a logical OR operation (ORR instruction) with
the zero register $xzr. The second instruction (BL) invokes
swift_release, which decrements the reference count of
the heap object held in the argument $x0. In this example,
the pointer to the heap object was originally present in $x20
(source register), but it had to be moved to $x0 (destination
register) to meet the calling convention [51], [52], which
expects the first argument in $x0.

Register assignment [4] choices can lead to many repeated
patterns — for example, Listings 1 and 2 differ only in
their source registers. Over the entire program binary, these
patterns can occur many times, which results in repetitions
of the pattern. There are many possible targets for a function
call instruction, and hence each one contributes to a unique
2-instruction pattern. Finally, the callee can expect more than
one argument (e.g., swift_allocObject [50] in Listing 3
expects three arguments); hence, the destination register can
also be different and be reordered by the instruction scheduler,
which also contributes to several 2-instruction patterns.

Listing 7 shows a frame setup sequence in AArch64; eight
callee-saved registers x19-26 are effectively pushed onto the
stack using four STP instructions [32], where each instruction
stores a pair of registers to contiguous memory pointed to by
the stack pointer $sp. This sequence repeats about 7K times
in the UberRider app. Listing 8 shows an analogous frame
destruction sequence where the same set of registers are popped
from the stack using four LDP instructions [32], where each
instruction loads a pair of registers from contiguous memory
pointed to by $sp.

(4) The generous use of novel high-level language features
and their corresponding code generation contribute to certain
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1 $x0 = ORRXrs $xzr, $x20
2 BL swift_release

Listing 1: swift_release
(46.3K repeats)

1 $x0 = ORRXrs $xzr, $x19
2 BL swift_release

Listing 2: swift_release
(21.8K repeats)

1 $w2 = ORRWri $wzr, 2
2 BL swift_allocObject

Listing 3: swift_allocObject
(64.3K repeats)

1 $x0 = ORRXrs $xzr, $x20
2 BL objc_release

Listing 4: objc_release
(35.2K repeats)

1 $x0 = ORRXrs $xzr, $x20
2 BL objc_retain

Listing 5: objc_retain
(29.5K repeats)

1 $x0 = ORRXrs $xzr, $x20
2 BL swift_retain

Listing 6: swift_retain
(24.4K repeats)

1 $sp = STPXpre $x26, $x25,
$sp(tied-def 0), -10

2 STPXi $x24, $x23, $sp, 2
3 STPXi $x22, $x21, $sp, 4
4 STPXi $x20, $x19, $sp, 6

Listing 7: Frame setup
(7K repeats)

1 $x20, $x19 = LDPXi $sp, 6
2 $x22, $x21 = LDPXi $sp, 4
3 $x24, $x23 = LDPXi $sp, 2
4 $sp, $x26, $x25 = LDPXpost

$sp(tied-def 0), 10

Listing 8: Frame destroy
(7K repeats)

1 func ul<T: Sequence>(collection: T,
2 closure: T.Iterator.Element){
3 I evaluate("ul", {for i in collection {closure(i)}})
4 }
5 func table<T: Sequence>(collection: T,
6 closure: T.Iterator.Element){
7 I evaluate("table", {for i in collection {closure(i)}})
8 }
9 func tbody<T: Sequence>(collection: T,

10 closure: T.Iterator.Element){
11 I evaluate("tbody", {for i in collection {closure(i)}})
12 }
13 func evaluate(node: String, closure: Closure){
14 · · ·
15 . closure()
16 · · ·
17 if let idd = idd { globalMap["id"] = idd }
18 if let dir = dir { globalMap["dir"] = dir }
19 · · · 124 such assignments · · ·
20 }

Listing 9: The closures on lines 3, 7, and 11, result in creating three instances
of evaluate where the closure is expanded on line 15. The next 124
assignments starting at line 17 form the longest repeating straightline sequence
among the three instances.

very long undesirable repeated patterns We elaborate more on
this with two examples.

Closure specialization. Listing 9 shows the Swift code
skeleton for the longest repeating pattern in the UberRider
app, which is 279 instructions long. The pattern repeats
three times. Our analysis attributes it to a code in the third-
party HTTP server Swifter [53] used in the app. Below we
describe how this code is generated by the Swift compiler from
closure, which is a high-level language construct.

There are three generic functions ul, table, and tbody,
each of which internally invokes the function evaluate with
two parameters: a node string and a closure. The function
evaluate instantiates the closure followed by a series of
124 updates to the globalMap. While compiling this code,
the Swift compiler hoists all the 124 nullness-checks in lines
starting from 17 (i.e., if let idd = idd ...) resulting
in a very long basic block consisting of instruction to update
the globalMap 124 times. The compiler also specializes
evaluate to create three copies based on the three generic
functions (lines marked with I). This repeat of 124 updates
to the globalMap forms the longest repeating pattern.

1 final public class MyClass: Model, Equatable {
2 public let uuid: MyClassUUID
3 public let dest: Location
4 ... 118 such fields ...
5 public let title: String
6 public init(json: JSON) throws {
7 uuid = try json.getString(at: "uuid")
8 dest = try json.getString(at: "dest")
9 ... 118 such initialization ...

10 title = try json.getString(at: "title")
11 }}

Listing 10: A typical idiom in Swift to construct an object by deseralizing
from JSON. The try expression can throw an error.

O(N2) code blow-up in out-of-SSA from try expressions.
Listing 10 shows a common idiom [54], [55] recommended
by Swift to use the try expressions to deserialize JSON data
and assign to properties of a class. In this example, the class
MyClass contains 118 properties, which are initialized from
a JSON object. The initialization happens via try expressions,
which throw Error if the property is not found in the incoming
JSON object. In Swift, a throwing function propagates errors
to the enclosing scope. Figure 9 depicts the control-flow graph
at LLVM-IR level for Listing 10. Each try expression generates
two basic blocks: one normal execution block (labeled T#)
and another error block (labeled B#). The T# blocks not
only initialize a property but also update its reference counting
(not shown). If all try expressions succeed, the code returns
successfully after block T118. The B# blocks and their
reachable blocks handle the error scenario.

In case of an error, the control branches to the relevant
exception handling arm (B# blocks). The exception handling
block sets an appropriate swift.error object and then
branches to a common basic block marked as L. The block L
has 118 incoming edges, one for each try expression. Depending
on where the error occurred, reference is decremented for the
already initialized properties. To accomplish this goal, the
IRGen component of the Swift compiler (described in §II-A)
creates 118 temporary variables (marked with suffix Init in
block L). These variables take a true/false value based on the
edge taken to reach L. If a variable is set to true, then the
corresponding property’s reference will be decremented. For
example, if an error occurred while parsing JSON in block T2,
the control transfers to B2, and in L, %uuidInit will be true
having successfully created in T1. However, %dest and all
the subsequent variables will be set to false. In general, for
a sequence of N Init temporaries, Init1 ... InitN, if
the incoming edge is from block Bi, where 1 ≤ i ≤ N , the
code generation pattern ensures that all Init temporaries in
the range [1..i) are set to true (because those objects should
be released), and all Init temporaries in the range [i..N ] are
set to false (because those objects are not created).

Thus, 118 PHI nodes are embedded in L for the properties
plus one additional PHI node for the error object. At the end
of L, each temporary is checked in the order from the first to
the last, and if a temporary’s value is set to true, its reference
count is decremented, moving on to the next one as shown in
the lower part of the Figure 9.
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%error = phi [%e1, B1] [%e2, B2] [%e3, B3] … [%e118, B118] 
%uuidInit = phi [false, B1] [true, B2] [true, B3] … [true, B118]
%destInit = phi [false, B1] [false, B2] [true, B3] … [true, B118]

… 118 times … 
%titleInit =  phi [false, B1] [false, B2] [false, B3] … [true, B118]

%uuidInit == true? 

uuid = try 
json.decode()

dest = try 
json.decode()

title = try 
json.decode()

%e1= 
swift.error() 

%e2= 
swift.error()

%e118= 
swift.error() 

Successful 

return

… 118 times … … 118 times …

Release reference to uuid %destInit == true?

true false

Release reference to dest … == true?

true false

Release reference to title Return %error

true false

… 118 times …

Out of SSA  
inserts 118  

copies on each  
incoming edge 

B1

B2

B118

Error

Error

Error

Success

T1

T2

T118

L

Fig. 9: Generous use of try expression in object initialization causes many
copy assignments during out-of-SSA translation.

1 $w20 = ORRWri $wzr, 0 // copy
2 $w24 = ORRWri $wzr, 0 // copy
3 ... 9 copies ...
4 $w8 = ORRWri $wzr, 0
5 STRXui $x8, $sp, 0 // spill
6 $w8 = ORRWri $wzr, 0
7 STRXui $x8, $sp, 1 // spill
8 ... 25 spills ...
9 $w8 = ORRWri $wzr, 0

10 STRWui $w8, $sp, 24 // spill

Listing 11: Out-of-SSA copies and spills due to Swift’s try clause.

Listing 11 shows a snippet of machine-code instructions
that repeat after out-of-ssa translation [56]–[59] of the L
block for each PHI. The copy statements are inserted in their
predecessor blocks. Some of these copies are performed in
registers, and others are spilled. The interesting part is that
these copies are inserted in all the predecessor blocks, leading
to a major code bloat. The number of copy instructions added
after out-of-ssa is O(N2), where N is the number of try block
expressions used for JSON deserializtion. Substrings of these
copy instructions are alike among various predecessors, which
gives the opportunity for machine-code outlining to save size.
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Fig. 10: New build pipeline for exploiting whole-program optimizations in
iOS apps.

V. GETTING MORE FROM MACHINE OUTLINING

In this section, we first describe our new whole-program
optimization pipeline. Subsequently, we improve the machine
outliner to deliver a higher impact.

A. New iOS Build Pipeline

Despite machine outlining being enabled in the Swift
compiler, the default iOS build pipeline described previously
in §II-A is a serious hurdle to making it deliver its full
impact. First, since each module is independently compiled
into machine code, the total amount of repeated sequences
available for outlining within a function is less. Second, the
outliner will produce the same outlined function in each module
for patterns that repeat in each module — meaning there are
several outlined function clones when all machine-code files
are linked, defeating the purpose of outlining.

We address this limitation by modifying our build pipeline
to adopt whole-program optimization, as shown in Figure 10.
The new pipeline produces LLVM IR for each module in lieu
of directly producing the machine code. It, then, combines
all LLVM-IR files into one large IR file using llvm-link.
Subsequently, it performs all LLVM-IR level optimizations
on this single IR file using opt. We then feed the optimized
IR to llc, which lowers the IR to the target machine code;
during this phase, we enable machine outlining on the whole
program. This ensures (a) maximum similarity is exploited
while identifying candidate machine code sequences, and (b)
no outlined function is a clone of another outlined function,
which would have been common had we performed only per-
module machine outlining. The machine code is finally fed to
the system linker along with any pre-compiled machine code to
produce the final binary image. §VII-A quantifies the benefits
of the whole-program outlining over the default.

B. Improvements to MachineOutliner

The greedy machine-outlining algorithm implemented in
LLVM squanders a significant size-saving opportunity. We first
depict this lost opportunity using an anecdotal example and
then show the real sequences from our app. In Figure 11a,
two sequences BCD and ABCD are the two potential patterns
to outline. Without the loss of generality, assume no overhead
of outlining at the call site or frame overhead for the outlined
function. LLVM’s MachineOutliner chooses BCD because
it shows the maximum savings in the immediate next step:
choosing BCD will shrink 8 × 3 = 24 instructions into 8
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(a) Eight sequences totaling 29 instructions.
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(b) A greedy choice to outline most prof-
itable pattern reduces the size to 16 instruc-
tions.
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(c) A greedy choice to outline longest se-
quence reduces the size to 15 instructions.
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(d) Repeated application of most profitable
pattern reduces the size to 13 instructions.

Fig. 11: A demonstration of the suboptimality of greedy outlining and the superiority of repeated outlining.

1 $w1 = ORRWri $wzr, 1728
2 $w2 = ORRWri $wzr, 2
3 BL swift_allocObject

Listing 12: A 3-instruction pattern
has 16K candidates.

1
2 $w2 = ORRWri $wzr, 2
3 BL swift_allocObject

Listing 13: A 2-instruction
substring has 65K candidates.

instructions while introducing a new function of 3 instructions,
with a total savings of 13 instructions; in contrast, choosing
ABCD will shrink 5×4 = 20 instructions into 5 instructions and
introduce a new function of 4 instructions, with a total savings
of only 11 instructions. Outlining BCD, shown in Figure 11b,
reduces the code to a total of 16 instructions. Outlining ABCD,
however, is more profitable in reality because it not only allows
outlining ABCD first but also allows outlining BCD subsequently
on the remaining candidates to reduce the total size to 15
instructions, as shown in Figure 11c. However, this cascading
effect is not immediately obvious; clearly, the greedy algorithm
implemented in LLVM is sub-optimal.

Listing 12 shows a 3-instruction sequence, which repeats
16K times, and Listing 13 shows a 2-instruction sequence,
which is a suffix of the 3-instruction pattern but repeats 65K
times in the UberRider app. The greedy algorithm prefers
the 2-instruction sequence for outlining for immediate profit
but fails to exploit size reduction on lengthier sequences.

We address this issue by introducing repeated machine
outlining in LLVM. The idea of repeated machine outlining is
to use the greedy algorithm to choose the next most profitable
pattern as before, but, instead of discarding lengthier candidates
whose substrings are already outlined, we continue to iteratively
apply the same algorithm on the new candidates, which now
contain one or more calls to already outlined patterns. Since
MachineOutliner relies on up-to-date liveness information,
we had to update the candidate’s liveness information after
the call/branch instructions are introduced, details of which
are omitted for brevity. Repeated machine outlining is not
the last pass in LLVM; one can further apply other low-level
optimizations after applying the repeated outlining. All changes
related to repeated machine outlining are upstreamed to LLVM
[60], [61].

The repeated outlining offers practical benefits over the de-
fault greedy algorithm. Going back to our example, Figure 11d
shows that the sequence AX can be outlined during the second

repetition of outlining; the final size is 13 instructions — better
than both alternatives. The number of repetitions should be
tunable. Our evaluation shows that our app converges to an
optimal code size after five rounds of machine outlining.

VI. PRACTICAL CHALLENGES

In this section, we describe a few challenges in bringing
the new whole-program pipeline along with the extended-
MachineOutliner to production in the UberRider and
other apps. As stated before in §I, compile time, performance,
and developer transparency were our topmost considerations.

(1) New pipeline adoption. Overhauling the default build
workflow with our custom workflow requires maintaining a
local LLVM tool-chain, which required buy-in from several
stakeholders, including the Developer Experience , Testing, and
Release teams. We tackled this by introducing a configuration
flag to either enable or disable the new build pipeline, making
it easier to roll-back in the event of outages. Every time
a developer checks-in her code in the integration system,
a fast debug build is kicked off, which does not use our
pipeline; simultaneously, a release build is asynchronously
started, which extensively tests our new pipeline using a
variety of optimization levels. All our release builds use
this new pipeline and add extra 45-minutes to our release
builds [within acceptable range]. This strategy of having two
separate pipelines ensures developers are unimpacted when
performing feature development, bug fixes, or testing in their
local environment.

(2) Language interoperability issues. Two LLVM-IR files,
one produced from the Swift compiler and another produced
from the clang compiler (for Objective-C), could not be
merged into a single IR file via llvm-link because of
conflicting “Objective-C Garbage Collection” LLVM metadata
flag being used by both compilers. Since our app is a mixture of
Swift and Objective-C, this support was necessary. Previously
the LLVM GCMetadata was a single value that encoded
compiler major and minor versions and other bits. Hence,
comparing all the bits arising from different compilers led
to conflicts. We fixed it by breaking up the LLVM metadata
into a set of “attributes”; later the link-phase only inspects
the relevant attributes ignoring the compiler that generated it.
Thus, we eliminate the conflict. Our fixes are upstreamed to
clang and llvm-link [62].
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(3) Performance regressions. Despite all our precaution and
testing, it was impossible to gauge the performance impact of
our changes in production on millions of users using different
hardware devices and operating systems and exercising very
different use cases in different geographies. Several months
after rolling out the outlining optimizations, we noticed an av-
erage 10% performance regression. Interestingly, the regression
was present whether or not we performed machine outlining
but used the new build pipeline. We noticed an increase in
page faults related to data. A further investigation pinpointed
the problem to the LLVM IR merging in llvm-link.
llvm-link does not preserve the original order in which

the data is present in each constituent module. When numerous
modules are merged, the intermixing of data from disparate
modules leads to data locality problems. Feature developers
typically put all the data needed by a feature in its relevant
module and place relevant data together. llvm-link destroys
this programmer-driven data affinity.

We introduced a new data-layout ordering [63] in
llvm-link that honors the original module-specific ordering
of data present in its constituent IR files even after merging.
This optimization eliminated the performance regression.

(4) Debuggability. An outlined function cannot map its
instructions back to any specific source location since multiple
source locations can map to it. After rolling out the new
pipeline, when our developers were investigating bug reports,
they were sometimes seeing an OUTLINED_FUNCTION_ID
on top of their call stacks; they were misunderstanding the
failures to be caused by the outlining optimization. None of
the failures were in reality related to outlining. Fortunately, the
failure reports have the full call stacks rather than just the leaf
function. By inspecting a level deeper into the backtrace, the
developers were able to debug the failure in their feature code.

VII. EVALUATION

In this section, we evaluate the impact of the machine
outlining, including the new pipeline on the UberRider app
over a one-year period using the production data obtained from
millions of daily users. We additionally assess performance
overhead of machine-code outlining on 26 benchmarks written
in Swift. We demonstrate the general applicability of our
approach on UberDriver app, UberEats app, the clang
compiler, and the Linux kernel.

A. Impact of Machine-Code Outlining

Prior Swift compilers did not have machine outlining. Today,
Swift v5.2 enables MachineOutliner at per-module
level when compiled with -OSize. The UberRider app
built with the default iOS build pipeline, which uses Swift
v5.2, produces a 145.7MB binary that has 114.5MB code
section, which forms the baseline for our final size gains.

In order to assess the impact of different rounds of outlining
when performed on per-module, we extended the default build
pipeline that can both disable outlining and repeat machine
outlining per-module. Figure 12 depicts our empirical findings.
The x-axis marked as None is produced by disabling machine
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Fig. 12: Comparison of size reduction (a) code section vs. full app binary,
(b) different rounds of machine outlining repeats, and (c) whole-program vs.
intra-module machine outlining.

outlining, however all other size-reducing optimizations in
LLVM are enabled. The rest of the points on the x-axis
progressively increase rounds of machine outlining.

First, comparing the whole binary size (the top two lines)
with the code size (the bottom two lines) shows that the app
binary size reduces proportionally with the code section size
because of repeated outlining. Five rounds of machine outlining
in our new build pipeline produces a 120.1MB binary, which
reduces the binary size by 17.6% compared with the default
pipeline’s 145.7MB. The same produces a code section of
88.4MB, which is 22.8% smaller compared with 114.5MB in
the default pipeline. Out of the 22.8% code size savings, 27%
(7% points) is derived from repeated machine outlining.

Second, there is a continued but diminishing size reduction
with an increased number of machine outlining rounds. Also,
the gains for the intra-module outlining plateau sooner than the
inter-module outlining. Three rounds of outlining extract most
of the size benefits. Beyond five rounds, there is no benefit at
all, but the initial few rounds cannot be discounted. We chose
five rounds as the default for the UberRider app.

Third, comparing the pair of bottom two lines, it is clear
that inter-module (whole program) repeated machine outlining
significantly outperforms intra-module outlining. At five rounds
of repeats, the whole-program machine outlining delivers
88.42MB code size, whereas doing the same on only individual
modules delivers a 100.53MB (13.7%) code size increase.

Table II shows compile-time statistics on the number of
machine code sequences outlined (row 1), the number of
new functions created (row 2), and the total size of code
needed for the outlined functions (row 3) at each repetition
of machine outlining. Five rounds of outlining eliminates 4.7
million candidates at the cost of creating 259K more functions,
which consume 3.53MB of code.

371



Fig. 13: Performance comparison of five rounds of machine-code outlining in the new build pipeline against the default iOS build pipeline. A cell with a red
tinge implies performance regression (unfavorable); a cell with with a blue tinge shows performance improvements (favorable).

TABLE II: OUTLINING STATISTICS AT DIFFERENT LEVELS OF REPEATS.

Metric rounds of outlining
1 2 3 4 5

# sequences outlined (×106) 3.08 4.30 4.62 4.70 4.71
# functions created (×105) 1.15 2.03 2.44 2.57 2.59

Bytes consumed by 1.69 2.80 3.33 3.50 3.53
outlined functions (×106)

B. Production Performance Data

Outlining may degrade performance due to extra branch/call
overhead. However, performance gains are also possible
because of the reduced instruction footprint. The UberRider
app is intensive on the User Interface (UI), and our code
footprint is heavy. A large fraction of the code is run only

once in a typical usage scenario — there is no single “hotspot”
code, unlike HPC-style code.

Figure 13 shows the heatmaps for several critical use
cases (named core-spans) identified by the UberRider app
development team. The rows in each span represent different
hardware versions, and the columns represent different OS
versions. Since the data from production can be noisy, we
populate only those cells with > 25K samples both before and
after optimization. The value in each cell is the ratio of the
50th percentile (P50) time to execute the span with our whole-
program 5-rounds of repeated machine-code outlining, divided
by the time to execute the same span without the optimization;
hence, a value greater than 1.0 implies performance regression,
and a value less than 1.0 shows performance improvement.
The data-layout optimization described in Section VI is already
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TABLE III: AVERAGE EXECUTION TIME OF CORE SPANS.

SPAN Baseline (sec) Optimized (sec)
SPAN1 4.7s 3.9s
SPAN2 2.1s 2.0s
SPAN3 6s 5.6s
SPAN4 2.1s 2.1s
SPAN5 1.3s 1.3s
SPAN6 .64s .66s
SPAN7 1.1s 1.1s
SPAN8 2.6s 1.8s

enabled in our optimized versions. Table III shows the execution
time of these core spans averaged over all OSes and devices.

P50 focuses on the central tendency. The other percentile
values (e.g., p75, p95) from production showed similar trends.
About 3% of dynamic instructions execute outlined instructions
in the UberRider app.

A handful of spans show some performance improvements.
On average there is 3.4% performance gain, and in the best
case it is 25% for span 8, on 13.5.1 OS on iPhone X
Gbl device. There are multiple factors in play; outlining leads
to a smaller instruction footprint and hence possibly less icache
and iTLB pressure, but it introduces slightly more instructions
to accomplish the same quantity of work. We observed a 4%
increase in instructions per cycle (IPC) with machine outlining
compared to no outlining, which is commensurate with the
3.4% performance gain. Span 6 shows some regression. It is
the shortest span with only 0.64 seconds of execution. Notice,
however, that the slowdown is negligible. With the diversity
in OSes and hardware, continually changing software, and
other region-specific experimental flags, it was not feasible to
isolate improvements or regressions to a particular hardware
subsystem in an out-of-order, multi-issue, deeply pipelined
processor, where the penalty matters if it leads to stall cycles.

In Figure 13, we notice more blue cells indicating overall
performance gains. Overall, we see a geometric mean perfor-
mance gain of 3.4% due to our new pipeline and optimization.
Given the volume of real-world data used in the evaluation,
we are confident about the conclusions derived and convinced
that machine outlining, when performed with a whole-program
pipeline, not only saves app binary size by 23% but also mildly
improves performance by 3.4% for iOS mobile applications
with a large code footprint and few code hotspots.

C. Build Time

We evaluate the compile time on a 10-core iMac Pro (2017)
equipped with a 64GB DDR4 running MacOS 10.15.6. The
default pipeline builds the app in 21 minutes; the new pipeline
with no machine outlining takes 53 minutes, which includes
about 7 minutes of llvm-link, 14 minutes opt, 11 minutes
of llc and 3 minutes of the system linker. One round of
outlining takes about 7 minutes in llc, and two rounds take
9 minutes. Each additional round adds progressively less extra
time, usually under 30 seconds. Overall, five rounds of outlining
builds in 66 minutes — a 45-minutes addition to the baseline.

D. Lifelong Code-Size Savings

Our new pipeline finds more opportunities for binary-size
reduction in a continuous development environment. We refer
the reader to Figure 1 in §I at the beginning of this paper to
observe the impact of repeated machine-code outlining on our
app code bytes. In this figure, the baseline (blue) code size is
already optimized for size, but it uses per-module optimization
and does not have repeated machine outlining (which represents
the default iOS pipeline).

The code-size growth for the baseline fitted with the linear
regression line has a slope of 2.7 (96% confidence). The code-
size growth with our optimizations (red line) has a slope of
1.37 (98% confidence). Hence, we reduce the code size growth
by about 2×. We believe this “life-long” code-size impact is a
significant benefit of the optimizations we developed.

E. Generality of Repeated Machine-Code Outlining

1) Other iOS apps: Following the success of the
UberRider app, we rolled out whole-program machine-code
outlining with five rounds of repeats to UberDriver and
UberEats apps. Both apps are used daily by millions of
users worldwide. The UberDriver app is 2.2 million lines
of code with 77% swift and 23% objective-C; the UberEats
app is 2.1 million lines of code with 66% swift and 34%
objective-C. The insights presented in Section IV for the
UberRider app — short sequence of repeats, power law of
repetition frequency, language features causing repeats, LLVM
out-of-SSA causing copies, and importance of repeated machine
outlining — translate to these apps also. UberDriver and
UberEats apps shrank their code size by 17% and 19%,
respectively, using our optimizations.

2) Non-iOS programs: We also applied our techniques
to the Clang v9.0.0 compiler and the Android v4.19
Linux kernel. We observed short sequences that move multiple
registers to/from memory to be common; the frequency
distribution showed the power-law; the register movement
to setup calling convention often appeared as top outlining
candidates; in the Linux kernel, the function epilogue to check
stack smashing attack is a common repeating code pattern.
Five-rounds of machine outlining reduced the code size of
Linux kernel and Clang by 14% and 25%, respectively.

3) Benchmarks: We collected a set 26 swift benchmarks
that implement popular algorithms [64]. The benchmarks
are small and single-module; hence, they do not represent
a typical use case scenario where we recommend applying our
optimizations. Evaluating these benchmarks aims to understand
the performance overhead when the outlining happens in fre-
quently executed code paths. Table IV shows the performance
degradation after five rounds of outlining on these benchmarks
on the previously mentioned iMac Pro system. The average
slowdown is only 1.63%, and there are several instances of
speedups. The Dijkstra’s algorithm incurs a 10.81% slowdown.

We also created a pathological case where the program
consisted of a long-running loop with 2-instruction body,
where the body was replaced via outlining; it showed only an
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TABLE IV: PERFORMANCE OVERHEAD OF FIVE ROUNDS OF MACHINE-
CODE OUTLINING ON SWIFT BENCHMARKS. A NEGATIVE OVERHEAD MEANS
A SPEEDUP.

Benchmark %overhead
BFS 2.76

Boyer-Moore-Horspool 2.90
BucketSort -0.12
ClosestPair 0.48

Combinatorics 1.05
CountingSort -3.42

CountOccurences -0.64
DFS 1.75

Dijkstra 10.81
EncodeAndDecodeTree 1.69

GCD 3.19
HasTable 0.70
Huffman 3.12

Benchmark %overhead
JSON 1.13

Knuth-Morris-Pratt -1.49
LCS -3.40

LRUCache 0.69
OctTree 0.02

QuickSort 1.54
RedBlackTree 6.54

RunLengthEncoding 0.42
SimulatedAnneaning 1.39

SplayTree 7.06
StrassenMM 1.99

TopologicalSort 2.19
Z-algorithm 0.06

Average 1.63

8.67% slowdown. Outlined branches are predictable by modern
hardware, and the cost is largely hidden in the pipeline.

VIII. CONCLUSIONS AND FUTURE WORK

We performed a systematic analysis of the UberRider app,
a production iOS application and showed numerous repeating
patterns of machine code and pinpointed their causes to high-
level language features. Machine outlining, when applied at the
whole-program level, reduces app binary size significantly. We
enhanced LLVM’s machine outlining with repeated outlining
to reduce the code size further. Our optimizations are in
production, used by millions of daily-users, and have been
instrumental in keeping the app size under control. The benefits
of our optimizations grow over time, making them highly
effective for code-size reduction and desirable in a fast-growing
code base. We evaluated the impact of our optimizations on the
app performance and compile time; we showed no performance
regressions in large-scale deployments and alleviated any
compile-time impact for hundreds of developers.

Code-size optimization has been at the heart of compiler
technology for several decades, but less work has been done to
detect missed opportunities in code size. Observing replicated
machine-code sequences at the whole-program level opens a
new avenue to pinpoint and quantify repeated code patterns
and attribute them to various layers of code transformation.
We have also found the applicability of our findings on
UberDriver and UberEats iOS apps and also on the open-
source desktop and server programs such as the clang compiler
and the Linux kernel. Our future work involves exploring
(1) semantic equivalence of machine-code sequences, (2)
interactions between instruction scheduling, register assignment,
and machine-code outlining, and (3) layout optimization on
the outlined code.

APPENDIX A
ARTIFACT EVALUATION

A. Abstract

We make the LLVM compiler changes available with this
artifact. Since the UberRider app is proprietary, its source
code or binary cannot be released. In lieu of the UberRider
app, we provide a set of Swift algorithmic benchmark programs

and precompiled Android v4.19 Linux kernel and Clang
9.0.0 compiler LLVM bit codes for exercising our algorithm.

We show the impact of the compiler changes on a set of Swift
benchmarks and Android v4.19 Linux kernel and Clang
9.0.0 compiler applications. There are three dimensions to
the artifact.

1) Apply our changes to LLVM and produce a functional
LLVM toolchain.

2) Compare the performance of a suite of Swift benchmarks
with and without the machine outlining optimizations;
in this case, the code size is not important because the
benchmarks are very small. Please note, as described in
the paper, the real high impact of machine outlining and
repeated machine outlining is when we have multiple
compilation units analogous to many swift modules (see
next bullet item).

3) Apply our code-size optimizations and demonstrate size
savings (with and without outlining) on large open-source
code; we pick the clang compiler and android Linux code
(already compiled into LLVM bitcode). Here we show
how repeated machine code outlining yields significant
size reductions. This is comparable to what we see on
the UberRider app.

These steps are automated and the scripts can be
easily extended to exercise more benchmarks and
apps. The only externally visible commandline flag is
-outine-repeat-count=<uint> to the LLVM’s llc
tool, which controls how many times to perform outlining.

B. Artifact Checklist

• Algorithm: Repeated machine-code outlining.
• Program: LLVM.
• Run-time environment: MacOS and Xcode 11.6.0.11E70.
• Hardware: Apple MacBook / MacMini / iMac series.
• Metrics: Running-time comparison and size comparison.
• Output: Speedup/slowdown and size savings on the console.
• Experiments: Size and speed comparisons.
• How much disk space required (approximately)?: 6 GB.
• How much time is needed to prepare workflow (approxi-

mately)?: 5 minutes.
• How much time is needed to complete experiments (approx-

imately)?: 3 hours.
• Publicly available?: Yes.
• Code licenses (if publicly available)?: University of Illi-

nois/NCSA.
• Data licenses (if publicly available)?: 2016 Matthijs Holle-

mans and contributors and GPL.
• Workflow framework used?: No.
• Archived (provide DOI)?: 10.5281/zenodo.4281687

C. Description

1) How Delivered: Uploaded to https://doi.org/10.5281/zenodo.
4281687.

2) Hardware Dependencies: A reasonably new Apple Mac
laptop running on an x86-64 machine; any other Mac system such
as MacMini or iMac will also do. Exercising the UberRider app
would have required an AArch64 iOS device and several app signing
tokens, which is not possible outside of the industrial setting.
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Fig. 14: Workflow of evaluating the artifact. Numbers in the black circle is
the order to follow evaluation. 1) build baseline LLVM, 2) apply our repeated
machine-code outlining patch and build an optimized version of LLVM 3) run
Swift benchmarks suites compiled with both versions of LLVM and compare
their running time, 4) compile clang 9.0.0 and Android 4.19 Linux
from bit code to AArch64 machine code using both compilers (applying a
different number of outlining repeats when using the optimized version) and
compare the sizes.

3) Software Dependencies:
• Xcode 11.6.0.11E70. Any other Xcode 11.0 series should

be fine, but do not use Xcode 12+ since our distributed version
of LLVM will become older for those versions. Also, look up
https://xcodereleases.com/ to make sure your OS is up-to-date
with the Xcode version you choose.

• Ninja
• cmake

4) Data Sets:
• Randomly picked benchmarks from https://github.com/

raywenderlich/swift-algorithm-club and slightly modified to run
long enough to measure performance.

• clang-9 LLVM bitcode file compiled for size. It is compiled
for an AArch64 Linux machine.

• Android 4.19 Linux LLVM bitcode file compiled for size.
It is compiled for an AArch64 architecture.

D. Installation
1. Install Xcode 11.6.0.11E70.
2. brew install ninja
3. brew install cmake
4. wget -o artifact.tgz \
https://zenodo.org/record/4281687/files/
artifact.tgz?download=1

5. tar zxf artifact.tgz
6. cd artifact

E. Experiment Workflow
Figure 14 depicts our experimental workflow.

F. Artifact Organization
1) llvm-project.tgz is the baseline LLVM

project obtained from https://github.com/
llvm/llvm-project/ at the commit version
3bd4b5a925bd5bd5a5498d8d84596ec099e9c198.

2) patchfile.patch is our repeated machine outlining patch.
3) install.sh unarchives llvm-project.tgz,

benchmarks.tgz, and apps.tgz.
4) benchmarks.tgz once uncompressed into benchmarks

directory, contains Swift benchmarks.
5) apps.tgz once uncompressed into apps directory,

contains apps/android_linux.arm64.bc and
apps/clang9.arm64.bc, which are respectively bitcode
files for Android 4.19 Linux and clang 9.0.0, respectively.

6) runme.sh is the high-level automation script.
7) */clean.sh and */run.sh scripts clean and run respective

directories where they are present.

G. Evaluation and Expected Result
Running the automation script should run everything in one

command.

./runme.sh

This script will follow the workflow in Figure 14.
1) It unarchives the.tgz files into respective directories using

install.sh
2) It builds the baseline LLVM into

llvm-project/BASELINE.
3) It applies the patch patchfile.patch.
4) It builds the LLVM with our patch into

llvm-project/OPTIMIZED.
5) It enters the benchmarks directory and runs run.sh script.

a) run.sh compiles each single .swift file benchmark
into an LLVM bitcode file with -Osize flag.

b) It performs the standard bitcode-to-bitcode size optimiza-
tions using the LLVM opt tool.

c) It performs bitcode-to-machine code generation us-
ing the LLVM llc tool. This is a crucial step
that exercises our changes. This step is repeated
using both the llvm-project/BASELINE and
llvm-project/OPTIMIZED LLC versions. We re-
peat the machine-code outlining 1-5 times producing one
machine-code file in each setting.

d) Links each machine code file into a mach-o executable
using ld.

e) Runs the executables ten times each (for both baseline and
optimized) and shows performance slowdown of outlined
versions with respect to the baseline (negative number
means speedup). It also shows the size savings with
respect to the baseline; however, the size savings for
benchmarks are inconsequential. Notice that the runtime
slowdown is typically very small, which shows that
the repeated outlining did not significantly degrade the
performance even when outlined code was highly executed
in these synthetic benchmarks. You may compare the
results output to the screen with the example output
present at benchmarks/expected_results.txt.

6) It enters the apps directory and runs run.sh script.
a) run.sh compiles each of the .bc files into machine

code using the two variants of llc. We repeat the
machine-code outlining 1-5 times producing one machine-
code file in each setting.

b) For each app, it outputs the number of machine code
instructions generated, the number of candidate machine-
code sequences outlined, the number of new outlined
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functions created, and finally the percentage size saving
with respect to no machine-code outlining. Notice how
the size savings increase with each repeated machine
outlining, which showcases the strength of repetition of
machine-code outlining. Note, that the saving is computed
based on the number of instructions, which is fixed-width
in AArch64; for a varying-width instruction architectures,
one needs to use other techniques such as looking into the
.text section of the binary. You may compare the results
output to the screen with the example output present at
apps/expected_results.txt

H. Experiment Customization
One can add more Swift benchmarks to benchmarks/run.sh

file and obtain more results. One can add more LLVM bitcode files to
apps/run.sh file and obtain more results. Note that if the bitcode
is not for AArch64 architecture, adjustments to the flag passed to
llc may be necessary. One can add more number of outlining repeats
by changing the value passed to -outine-repeat-count flag in
both apps/run.sh and benchmarks/run.sh.

REFERENCES

[1] I. Mansoor, “App Revenue Statistics (2019),” https://www.businessofapps.
com/data/app-revenues/t, Jul 2020.

[2] “App Store,” https://www.apple.com/ios/app-store/, Apple.
[3] A. Beszédes, R. Ferenc, T. Gyimóthy, A. Dolenc, and K. Karsisto,

“Survey of code-size reduction methods,” ACM Comput. Surv.,
vol. 35, no. 3, p. 223–267, Sep. 2003. [Online]. Available:
https://doi.org/10.1145/937503.937504

[4] L. Torczon and K. Cooper, Engineering A Compiler, 2nd ed. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2007.

[5] J. Cocke, “Global Common Subexpression Elimination,” SIGPLAN
Not., vol. 5, no. 7, p. 20–24, Jul. 1970. [Online]. Available:
https://doi.org/10.1145/390013.808480

[6] R. Kennedy, S. Chan, S.-M. Liu, R. Lo, P. Tu, and F. Chow, “Partial
Redundancy Elimination in SSA Form,” ACM Trans. Program. Lang.
Syst., vol. 21, no. 3, p. 627–676, May 1999. [Online]. Available:
https://doi.org/10.1145/319301.319348

[7] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, “Compilers: Principles,
techniques, and tools second edition,” 2007.

[8] Thomas J. Watson IBM Research Center. Research Division and Allen,
FE and Cocke, J, “A catalogue of optimizing transformations,” IBM
Technical Reports, 1971.

[9] B. K. Rosen, M. N. Wegman, and F. K. Zadeck, “Global value
numbers and redundant computations,” in Proceedings of the 15th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, ser. POPL ’88. New York, NY, USA: Association
for Computing Machinery, 1988, p. 12–27. [Online]. Available:
https://doi.org/10.1145/73560.73562

[10] M. N. Wegman and F. K. Zadeck, “Constant propagation with conditional
branches,” ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 13, no. 2, pp. 181–210, 1991.

[11] M. M. Chabbi, J. M. Mellor-Crummey, and K. D. Cooper, “Efficiently
exploring compiler optimization sequences with pairwise pruning,” in
Proceedings of the 1st International Workshop on Adaptive Self-Tuning
Computing Systems for the Exaflop Era, ser. EXADAPT ’11. New
York, NY, USA: Association for Computing Machinery, 2011, p. 34–45.
[Online]. Available: https://doi.org/10.1145/2000417.2000421

[12] L. Almagor, K. D. Cooper, A. Grosul, T. J. Harvey, S. W.
Reeves, D. Subramanian, L. Torczon, and T. Waterman, “Finding
effective compilation sequences,” in Proceedings of the 2004 ACM
SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for
Embedded Systems, ser. LCTES ’04. New York, NY, USA: Association
for Computing Machinery, 2004, p. 231–239. [Online]. Available:
https://doi.org/10.1145/997163.997196

[13] K. D. Cooper, P. J. Schielke, and D. Subramanian, “Optimizing for
reduced code space using genetic algorithms,” in Proceedings of the
ACM SIGPLAN 1999 Workshop on Languages, Compilers, and Tools
for Embedded Systems, ser. LCTES ’99. New York, NY, USA:
Association for Computing Machinery, 1999, p. 1–9. [Online]. Available:
https://doi.org/10.1145/314403.314414

[14] P. A. Kulkarni, D. B. Whalley, G. S. Tyson, and J. W. Davidson,
“Exhaustive optimization phase order space exploration,” in Proceedings
of the International Symposium on Code Generation and Optimization,
ser. CGO ’06. USA: IEEE Computer Society, 2006, p. 306–318.
[Online]. Available: https://doi.org/10.1109/CGO.2006.15

[15] J. Ernst, W. Evans, C. W. Fraser, T. A. Proebsting, and S. Lucco, “Code
compression,” in Proceedings of the ACM SIGPLAN 1997 Conference
on Programming Language Design and Implementation, ser. PLDI ’97.
New York, NY, USA: Association for Computing Machinery, 1997, p.
358–365. [Online]. Available: https://doi.org/10.1145/258915.258947

[16] T. J. Edler von Koch, B. Franke, P. Bhandarkar, and A. Dasgupta,
“Exploiting function similarity for code size reduction,” in Proceedings
of the 2014 SIGPLAN/SIGBED Conference on Languages, Compilers
and Tools for Embedded Systems, ser. LCTES ’14. New York, NY,
USA: Association for Computing Machinery, 2014, p. 85–94. [Online].
Available: https://doi.org/10.1145/2597809.2597811

[17] W.-K. Chen, B. Li, and R. Gupta, “Code compaction of matching single-
entry multiple-exit regions,” in Proceedings of the 10th International
Conference on Static Analysis, ser. SAS’03. Berlin, Heidelberg: Springer-
Verlag, 2003, p. 401–417.

[18] J. Lau, S. Schoenmackers, T. Sherwood, and B. Calder, “Reducing
code size with echo instructions,” in Proceedings of the 2003
International Conference on Compilers, Architecture and Synthesis
for Embedded Systems, ser. CASES ’03. New York, NY, USA:
Association for Computing Machinery, 2003, p. 84–94. [Online].
Available: https://doi.org/10.1145/951710.951724

[19] H. Massalin, “Superoptimizer: A look at the smallest program,” in
Proceedings of the Second International Conference on Architectual
Support for Programming Languages and Operating Systems, ser.
ASPLOS II. Washington, DC, USA: IEEE Computer Society Press, 1987,
p. 122–126. [Online]. Available: https://doi.org/10.1145/36206.36194

[20] C. Lattner and V. Adve, “LLVM: A Compilation Framework for
Lifelong Program Analysis and Transformation,” in Proceedings of
the International Symposium on Code Generation and Optimization:
Feedback-Directed and Runtime Optimization, ser. CGO ’04. USA:
IEEE Computer Society, 2004, p. 75.

[21] J. Caldwell and S. Chiba, “Reducing calling convention overhead in
object-oriented programming on embedded arm thumb-2 platforms,” in
Proceedings of the 16th ACM SIGPLAN International Conference on
Generative Programming: Concepts and Experiences, ser. GPCE 2017.
New York, NY, USA: Association for Computing Machinery, 2017, p.
146–156. [Online]. Available: https://doi.org/10.1145/3136040.3136057

[22] S. K. Debray, W. Evans, R. Muth, and B. De Sutter, “Compiler
techniques for code compaction,” ACM Trans. Program. Lang.
Syst., vol. 22, no. 2, p. 378–415, Mar. 2000. [Online]. Available:
https://doi.org/10.1145/349214.349233

[23] T. Glek and J. Hubicka, “Optimizing real world applications with GCC
Link Time Optimization,” 2010.

[24] B. Schwarz, S. Debray, G. Andrews, and M. Legendre, “Plto: A link-time
optimizer for the Intel IA-32 architecture,” in Proc. 2001 Workshop on
Binary Translation (WBT-2001), 2001.

[25] B. De Sutter, L. Van Put, D. Chanet, B. De Bus, and K. De Bosschere,
“Link-Time Compaction and Optimization of ARM Executables,” ACM
Trans. Embed. Comput. Syst., vol. 6, no. 1, p. 5–es, Feb. 2007. [Online].
Available: https://doi.org/10.1145/1210268.1210273

[26] D. Chanet, B. De Sutter, B. De Bus, L. Van Put, and K. De Bosschere,
“System-wide compaction and specialization of the linux kernel,” in
Proceedings of the 2005 ACM SIGPLAN/SIGBED Conference on
Languages, Compilers, and Tools for Embedded Systems, ser. LCTES
’05. New York, NY, USA: Association for Computing Machinery, 2005,
p. 95–104. [Online]. Available: https://doi.org/10.1145/1065910.1065925

[27] H. He, J. Trimble, S. Perianayagam, S. Debray, and G. Andrews, “Code
compaction of an operating system kernel,” in International Symposium
on Code Generation and Optimization (CGO’07), 2007, pp. 283–298.

[28] N. Pitre, “Shrinking the kernel with link-time optimization,” https://lwn.
net/Articles/744507/, January 2018.

[29] P. Zhao and J. N. Amaral, “Function outlining and partial inlining,”
in 17th Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD 2005), 24-27 October 2005, Rio de Janeiro,
Brazil. IEEE Computer Society, 2005, pp. 101–108. [Online]. Available:
https://doi.org/10.1109/CAHPC.2005.26

[30] Z. Peng and A. Jose Nelson, “Function outlining,” https://pdfs.
semanticscholar.org/6c72/2c58232816b74e23ebd60f9782073c29699b.
pdf.

376



[31] TIOBE Company, “TIOBE index for august 2020,” https://www.tiobe.
com/tiobe-index/.

[32] “ARM A64 Instruction Set Architecture,” https://static.docs.arm.com/
ddi0596/a/DDI_0596_ARM_a64_instruction_set_architecture.pdf, ARM
Ltd.

[33] “RxSwift: ReactiveX for Swift,” https://github.com/ReactiveX/RxSwift,
RxSwift Team.

[34] “SnapKit: A Swift Autolayout DSL for iOS and OS X,” https://github.
com/SnapKit, SnapKit Team.

[35] “Swift NIO,” https://github.com/apple/swift-nio, Swift-NIO Team.
[36] “Freddy,” https://github.com/bignerdranch/Freddy, Freddy Team.
[37] “Swift Protobuf,” https://github.com/apple/swift-protobuf, Swift Protobuf

Team.
[38] M. K. Ramanathan, L. Clapp, R. Barik, and M. Sridharan, “Piranha: Re-

ducing feature flag debt at uber,” in 2020 IEEE/ACM 42nd International
Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP), 2020, pp. 221–230.

[39] J. Paquette, “Reducing code size using outlining,” http://www.llvm.org/
devmtg/2016-11/Slides/Paquette-Outliner.pdf.

[40] P. developers, “PMD: An extensible cross-language static code analyzer.”
https://pmd.github.io/, Oct 2018.

[41] “Swift Programming Language,” https://github.com/apple/swift/blob/
master/lib/IRGen/Outlining.cpp, Swift Team.

[42] “MergeFunctions pass, how it works,” https://llvm.org/docs/
MergeFunctions.html, LLVM Compiler Infrasturcture.

[43] R. C. O. Rocha, P. Petoumenos, Z. Wang, M. Cole, and H. Leather,
“Function merging by sequence alignment,” in Proceedings of the
2019 IEEE/ACM International Symposium on Code Generation and
Optimization, ser. CGO 2019. IEEE Press, 2019, p. 149–163.

[44] R. Rocha, P. Petoumenos, Z. Wang, M. Cole, and H. Leather, “Effective
Function Merging in the SSA Form,” in Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI 2020. New York, NY, USA: Association
for Computing Machinery, 2020, p. 854–868. [Online]. Available:
https://doi.org/10.1145/3385412.3386030

[45] R. Riddle, “IR Outliner Pass,” https://reviews.llvm.org/D53942, Oct 2018.
[46] C. V. Lopes, P. Maj, P. Martins, V. Saini, D. Yang, J. Zitny, H. Sajnani,

and J. Vitek, “Déjàvu: A map of code duplicates on github,” Proc. ACM
Program. Lang., vol. 1, no. OOPSLA, Oct. 2017. [Online]. Available:
https://doi.org/10.1145/3133908

[47] R. Rocha, “CGO19FMSA.tar.gz,” 12 2018. [Online]. Available:
https://figshare.com/articles/software/CGO19FMSA_tar_gz/7473260

[48] “MergeSimilarFunctions,” https://reviews.llvm.org/D76522, LLVM
Github Monorepo.

[49] “Fractal,” https://en.wikipedia.org/wiki/Fractal, Wikipedia.

[50] “The Swift Runtime,” https://github.com/apple/swift/blob/master/docs/
Runtime.md, Swift Team.

[51] “The Swift Calling Convention,” https://github.com/apple/swift/blob/
master/docs/ABI/CallingConvention.rst, Swift Team.

[52] “64-Bit Architecture Register Usage,” https://github.com/apple/swift/blob/
master/docs/ABI/RegisterUsage.md, Swift Team.

[53] “Tiny http server engine written in Swift programming language.” https:
//github.com/httpswift/swifter, Swifter developers.

[54] “Error Handling,” https://docs.swift.org/swift-book/LanguageGuide/
ErrorHandling.html, Swift Team.

[55] F. Phill, “Encoding and Decoding JSON with
Swift 4,” https://medium.com/@phillfarrugia/
encoding-and-decoding-json-with-swift-4-3832bf21c9a8.

[56] B. Boissinot, A. Darte, F. Rastello, B. D. de Dinechin, and C. Guillon,
“Revisiting Out-of-SSA Translation for Correctness, Code Quality and
Efficiency,” in Proceedings of the 7th Annual IEEE/ACM International
Symposium on Code Generation and Optimization, ser. CGO ’09.
USA: IEEE Computer Society, 2009, p. 114–125. [Online]. Available:
https://doi.org/10.1109/CGO.2009.19

[57] V. C. Sreedhar, R. D.-C. Ju, D. M. Gillies, and V. Santhanam, “Translating
out of static single assignment form,” in Proceedings of the 6th
International Symposium on Static Analysis, ser. SAS ’99. Berlin,
Heidelberg: Springer-Verlag, 1999, p. 194–210.

[58] P. Briggs, K. D. Cooper, T. J. Harvey, and L. T. Simpson, “Practical
improvements to the construction and destruction of static single
assignment form,” Softw. Pract. Exper., vol. 28, no. 8, p. 859–881,
Jul. 1998.

[59] F. Rastello, F. d. Ferrière, and C. Guillon, “Optimizing translation out
of ssa using renaming constraints,” in Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-Directed
and Runtime Optimization, ser. CGO ’04. USA: IEEE Computer Society,
2004, p. 265.

[60] “Fix incorrect logic in maintaining the side-effect of compiler generated
outliner functions,” https://reviews.llvm.org/D71217, LLVM Github
Monorepo, December 2019.

[61] “Support repeated machine outlining,” https://reviews.llvm.org/D71027,
LLVM Github Monorepo, December 2019.

[62] “Fix conflict value for metadata Objective-C Garbage Collection in the
mix of swift and Objective-C bitcode,” https://reviews.llvm.org/D71219,
LLVM Github Monorepo, December 2019.

[63] “Preserve the lexical order of global variables during llvm-link merge,”
https://reviews.llvm.org/D94202, LLVM Github Monorepo, Jan 2021.

[64] W. Ray, “Swift Algorithm Club,” https://github.com/raywenderlich/
swift-algorithm-clu, 2021, accessed: 2021-01-01.

377


